Desafíos para la implantación de IoT en las organizaciones

Para poder explotar el gran potencial de IoT a nivel empresarial existen varios retos que las empresas deben abordar, estos desafíos forman parte de la adopción IoT y deben contemplarse en la hoja de ruta de implantación de IoT en una compañía.

Son:

· Seguridad

· Integración del back-end empresarial

· Interoperabilidad

· Evolución de la tecnología

Seguridad:

Los analistas coinciden en que la Seguridad sigue siendo una de los preocupaciones que hacen que las empresas estén siendo más precavidas con IoT. Una gran mayoría de las empresas que han empezado con IoT admiten vulnerabilidades y agujeros de seguridad en su infraestructura IoT.

Integración del back-end empresarial

Los dispositivos IoT permiten a las empresas reunir cantidades increíbles de nuevos datos, pero muchos de ellos no pueden crear valor por si solos. Si se considera IoT separado de los procesos clave de negocio de la empresa, el potencial de IoT es mucho menor.

La implementación de IoT puede y debe apoyar todas las operaciones de la compañía, así como para ofrecer una experiencia personalizada al cliente que mejore el reconocimiento de marca. Para esto, la tecnología IoT debe basarse en una arquitectura extensible que proporcione integración directa con el procesamiento de datos, análisis y sistemas operacionales.

Interoperabilidad

El caso de uso de negocio también implica integración de hardware y compatibilidad. Hablamos de un universo en rápida expansión que incluye hardware IoT, protocolos de conectividad y dispositivos inteligentes. En la mayoría de los casos, las empresas esperan que su ecosistema IoT crezca en alcance y variedad, por lo que la cuestión de la interoperabilidad puede convertirse en un sobrecoste grande a menos que se tome en cuenta desde el principio.

Evolución de la tecnología

No dejamos de ver nuevos pronósticos sobre la revolución de IoT, todo intento de establecer reglas y estándares no han tomado raíces, las normas y estándares siguen evolucionando y el panorama tecnológico general es muy diverso. Dado que IoT es cada vez más un activo estratégico para todas las empresas, la necesidad de su mejora continua y ajuste a nuevos requerimientos de negocios debe ser el centro de la estrategia corporativa. Hay varias formas para asegurar que la tecnología IoT pueda seguir el ritmo de evolución de IoT, entre ellas la de basarse en software open-source estandarizado por la comunidad.

Desafíos para la implantación de IoT en las organizaciones

Scripting Engine Enhancements

programming-1873854_1280In this version new enhancements have been included to help in the creation of scripts, either in Groovy, Python or R, showing an instance of the selected ontologies and auto completing in the editor. Also in the process log can be errors in the execution of the script.

Seguir leyendo “Scripting Engine Enhancements”

Scripting Engine Enhancements

IoT Data Models: Iniciativas y Sofia2 Data Model

¿Qué es un Data Model?

Un Data Model representa la estructura de tus datos y relaciones, por tanto organiza los elementos y estandariza como se relacionan unos con otros.

¿Por qué utilizar un Data Model en el ámbito IoT?

Los Data Models son fundamentales en el ámbito IoT donde tratamos con assets físicos, medidas, dispositivos, procesos, personas,… y el nuestro IoT Data Model debe ser capaz de modelar todos estos conceptos.

Un Data Model nos da una representación uniforme de todos los elementos de nuestro sistema, esto tienen numerosos beneficios:

  • Reuso: la capacidad de modelar componentes que luego podré reusar es una práctica estándar que permite ahorrar en costes
  • Flexibilidad: una vez creado el modelo, este permite que sea fácil actualizar, modificar o eliminar elementos del modelo sin necesidad de rehacer el sistema
  • Escalabilidad: simplifica el clonado y modificación de dispositivos que son similares o se comportan de la misma forma que otros ya testados.
  • Interoperabilidad: usar un Data Model que se base en estándares (JSON, XML,…) simplifica que este Data Model pueda usarse en aplicaciones futuras de forma sencilla
  • Colaboración: Un Data Model nos permite predefinir links, relaciones, acciones entre componentes, permitiendo que esto se defina cuando se está creando el modelo de modo que diferentes equipos puedan trabajar en partes
  • Independencia de la Plataforma: un Data Model permite una integración transparente con otros sistemas. Un modelo correctamente formado hará más sencillo crear aplicaciones como analítica sobre los datos

Iniciativas de estandarización de un Data Model en IoT

NOTA: No hemos considerado los protocolos de comunicación como MQTT-SN, LWM2M o CoAP, aunque en algunos casos hay ciertos solapes puestos estos protocolos pueden llevar embebido un Data Model.

 

En el mundo IoT existen varias propuestas para intentar estandarizar un Data Model único, aunque la realidad es que ninguna de ellas tiene una penetración en el mercado suficiente como para decantarse de forma unívoca por ella.

A continuación se incluye una tabla con información relevante sobre algunas de estas iniciativas:

  Descripción Organiz Formato Versión
SensorML http://www.opengeospatial.org/standards/sensorml

Sensor Model Language pretende definir semánticamente prceoss y componentes relacionados con las medidas, con el objetivo de conseguir interoperabilidad

OGC XML +XSD 2.0

2014

AMON https://amee.github.io/AMON/

Formato para definir datos de dispositivos

AMEE JSON 3.1

2012

SensorThings http://www.opengeospatial.org/standards/sensorthings

Forma abierta y unificada de conectar dispositivos, datos y aplicaciones.

OGC JSON +

OData

1.0

2016

GSMA IoT Big Data Armonized Data Model https://www.gsma.com/iot/wp-content/uploads/2016/11/CLP.26-v1.0.pdf

Definición de entidades de uso común en IoT y Big Data creando modelos harmonizados en ámbitos Agricultura, Automoción, Environment, Industria, Smart City y Smart Home

GSMA JSON +schema.org 1.0

2016

FIWARE Data Model https://www.fiware.org/data-models/

Adaptación de GSMA Data Model sustituyendo schema.org para definición de Data Modelo por JSON-Schema para simplificar su uso

FIWARE JSON +

JSON-Schema

1.0

2017

¿Qué tienen en común estas iniciativas?

El grueso de estas iniciativas (sobre todo las más actuales) usan JSON como formato de intercambio.

Respecto a JSON podemos decir:

  • Es un formato de intercambio ligero, en la actualidad se ha convertido en el estándar de intercambio sustituyendo a XML en la mayoría de los escenarios

a2.jpg

  • Es el formato usado “para todo” por los grandes en el mundo Web: Google, Amazon,…
  • Es el formato por defecto de la “API Economy” con la que por ejemplo los bancos y organizaciones ofrecen sus datos
  • Es un formato que se usa en las modernas aplicaciones Web y móviles por ser mucho más ligero que XML
  • Es un formato ligero, adecuado para dispositivos IoT

Para definir la estructura de un JSON (por ejemplo que atributos son obligatorios o el tipo de datos) existe JSON-Schema (el equivalente a XML-Schema), aunque en la actualidad no es de uso obligatorio ni está ampliamente estandarizado y existen otras iniciativas.

Sobre JSON y JSON-Schema y por debajo de estándares como los que mencionábamos tenemos otros formatos y definiciones como OData o schema.org, pero tampoco tienen una penetración masiva.

Sofia2 Data Model

Ontologías Sofia2

En Sofia2 a la Entidad del Data Model usado (Sofia2 Data Model) la denominamos Ontologías.

Las Ontologías Sofia2 permiten modelar desde conceptos sencillos como una medida a conceptos complejos como una organización.

Las Ontologías en Sofia2 se definen en JSON+JSON Schema.

Origen de las Ontologías Sofia2

El concepto de Ontología viene del proyecto europeo I+D SOFIA del que se origina Sofia2, que usaba como Data Model Ontologías RDF/OWL conforme los principios de la Web semántica.

Cuando en 2013 Indra considera evolucionar SOFIA para crear una plataforma empresarial (Sofia2) que pueda usarse en proyectos productivos y complejos se realiza un análisis y pruebas empíricas y se concluye que la tecnología subyacente a las ontologías tradicionales modeladas en OWL no escala conforme a las necesidades de los proyectos IoT y Big Data.

Tras considerar diversas opciones se considera que JSON+JSON Schema es la mejor propuesta de presente y futuro.

Conceptos del Sofia2 Data Model

El concepto clave del Sofia2 Data Model es la Ontología, como ya hemos dicho, pero existen otros conceptos importantes, como el Template y la Instancia de la Ontología.

  Template Ontología Instancia Ontología
Representa Plantilla, bien creada por un administrador, bien creada conforme a un estándar concreto (AMON, FIWARE Data Model) que permite que las Ontologías se creen de Entidad que representa un concepto sobre el que trabaja la Plataforma. Es un registro concreto de la Entidad que define la Ontología
Ejemplos Plantilla definiendo los atributos de Calidad medioambiental conforme el FIWARE Data Model

-Pla

Calidad Medioambiental (obtenida de un dispositivo)

-Previsión metereológica (obtenida por un algoritmo)

-Calidad medioambiental obtenida en una hora concreta en un punto concreto

-Previsión para una región y mes concreto

Formato JSON-Schema JSON-Schema

(soporta GeoJSON, OData)

JSON

(GeoJSON)

Dónde están -No se almacenan, son una definición Independiente del motor de persistencia elegido: en un modelo relacional representan una tabla, en una BD NoSQL tipo documental una colección de documentos,,… Independiente del motor de persistencia elegido: en un modelo relacional representan un registro, en una BD NoSQL tipo documental un documento concreto,….
Más info Soportado por completo estándares AMON y FIWARE Data Model Soportan versionado

Soportan consultas geográficas

 

 Sofia2 Data Model en el Control Panel de Sofia2

Template

El concepto de Template representa una Plantilla sobre la que luego podrán crearse las Entidades.

Por tanto sólo se permite a los usuarios con rol ADMINISTRADOR crear estas Plantillas:

a1

En la Plataforma sólo tienen permiso para crear Templates o Plantillas, como puede verse en la imagen:

Las Plantillas tienen asociadas una o varias categorías que me permiten categorizarlas y buscar por estas.

Una Plantilla se representa por un JSON-Schema:

a3.jpg

Ontología

La Ontología es el concepto clave del Sofia2 Data Model y también del funcionamiento completo de la plataforma, ya que sobre estas se desencadenan el resto de procesos:

  • Reglas: se aplican ante la llegada de una instancia de ontología (o bien planificadas) y permite acceder a los atributos de las ontologías para accionar en base a esta
  • Dashboards: se construyen bien representando en tiempo real las instancias que van llegando a la plataforma bien a través de una consulta a estas
  • Analítica: los modelos ML típicamente se realizan sobre las ontologías almacenadas en la infraestructura Big Data de la plataforma (BDH)

Los usuarios Sofia2 con rol COLABORADOR pueden crear Ontologías, existen diversos mecanismos de crear Ontologías, los principales son:

  • Creación Paso a Paso: me permite crear Ontologías indicándole los atributos que componen la ontología, el tipo de datos de cada uno y si son obligatorios. Es la opción ideal para ontologías sencillas (equivalentes a una Tabla)
  • Creación mediante JSON-Schema: en este caso crearemos la Ontología bien definiendo el JSON-Schema que representa mi entidad, bien partiendo de un template ya creado.

Si seleccionamos la creación vía Ontología entonces me pedirá que seleccione una de las categorías:

a4.jpg

Y una vez seleccionada una de ellas (por ejemplo GSMA) me dará la opción de seleccionar una de las Plantillas:

a5

Soporta además:

La creación de la Ontología a partir de un Schema XML (XSD).

La creación de la Ontología a través de un diagrama UML que se crea en el propio Panel de Control

  • Creación desde CSV o Excel: esta opción es muy útil cuando tenemos un fichero con datos con los que quiero hacer una carga inicial en la plataforma. La Plataforma me irá guiando y solicitando la información que necesita hasta generar de forma automática el JSON-Schema que representa los datos pasados:

q1

  • Creación desde JSON/XML: equivalente a la creación desde Excel en este caso podré subir una JSON o XML para que la Plataforma cree la Ontología correspondiente.
  • Creación Ontología Tipo KPI: en este caso lo que estamos haciendo es crear una Ontología que se calcula en base a cálculos sobre otras ontologías
  • Creación Ontología Tipo TimeSeries: el concepto de Time Series se refiere a datos de tipo Serie Temporal, la plataforma soporta la creación de estos modelos de forma sencilla: 

    Instancia de Ontología

    Representa una instanciación de una ontología, típicamente en un momento concreto y posición concreta.

    La Plataforma ofrece diversas herramientas para acceder a las instancias, la más usadas por el desarrollador será la Consola BDTR y BDH que permite a través de un wizard generar consultas sobre las ontologías:

q3.jpg

 

 

 

Desde la herramienta puedo visualizar los datos de la Ontología (instancias) en formato nativo de la Plataforma, esto es en JSON:

q3.jpg

Pero también puedo representar los datos en formato TABLA e incluso exportarlos a formato CSV, Excel o XML.

 

 

IoT Data Models: Iniciativas y Sofia2 Data Model