Real-time Location Systems (RTLS). RFID vs BLE vs UWB Tags

Post_RTLS

 

RTLS are used to automatically identify and track the location of objects or people in real time, usually within a building or a delimited area. The fixed reference points receive wireless signals from RTLS tags to determine their location.

 

Examples of real-time locating systems are:

  • Tracking automobiles through an assembly line
  • Locating pallets of merchandise in a warehouse
  • Identification of people for security and safety reasons
  • Finding medical equipment in a hospital

 

The physical layer of RTLS technology is usually some form of radio frequency (RF) communication, like BLE (Bluetooth 4.0), UWB (Ultra Wide Band ) or propietary systems, etc. Tags and fixed reference points can be transmitters, receivers, or both, resulting in numerous possible technology combinations.

 

RTLS are a form of local positioning system, and do not usually refer to GPS, mobile phone tracking. Location information usually does not include speed, direction, or spatial orientation. Instead they are very cost effective, need minimal batteries, work indoor and outdoor, do not need a mobile telecom operator and use open protocols.

 

Technologies in Real-Time Location Systems RTLS

 

There is a wide variety of technologies on which RTLS can be based:

 

    • Infrared (IR). They require a clear line of sight for labels and sensors to communicate, so if a board is covered by a blanket or flips, the system may not work properly.
    • Ultrasound. Ultrasound, as a communications protocol, is slower (with longer wavelengths) than the infrared, so it generally can not match the performance of other technologies
    • Wi-Fi. Although Wi-Fi infrastructure is often preexisting in the performance environment, accuracy is limited to up to 9 meters, which makes its value as a tool for locating the location is uncertain.
    • RFID. There are two types of RFID technologies to consider, active and passive. Passive RFID technology works only in the proximity of specialized RFID readers, providing a ‘point-in-time’ location. As an example, let’s think of a fashion store where the reader sends a radio signal to a labeled item of clothing and an alarm is triggered only when the label is detected very close to the designated control point. With active RFID, it has tags that send the signal to a reader every few seconds (similar to a cell phone and a tower) and triangulation software or other methods are used to calculate the position of the marked object.
    • UWB. The advantage of UWB technology is the high level of transmission safety. The UWB signal is difficult to detect and localize, because the spectral power density is below background noise. It can reach an accuracy of 10 centimeters at measuring distances of up to 100 m.
    • BLE. The Bluetooth Low Energy (or BLE) appears from the specification in version 4.0. It is aimed at very low power applications powered by a button cell. It has a data transfer rate of 32Mb / s. It operates on frequencies of 2.4 GHz and was created for marketing reasons for smartphone and tablet devices. Important advantages of this technology are that it’s based on a universal standard, and is immediately available on mobile devices without hardware need.

 

Comparison of Different Technology Tags for RTLS:

 

comparison

 

 

Real-time Location Systems (RTLS). RFID vs BLE vs UWB Tags

Tecnologías Localización Tiempo Real (RTLS): RFID vs BLE vs UWB

Post_RTLS

Los Sistemas de Localización en Tiempo Real (RTLS) se utilizan para identificar y rastrear automáticamente la ubicación de objetos o personas en tiempo real, generalmente dentro de un edificio o área delimitada. Los puntos de referencia fijos reciben señales inalámbricas de los Tags RTLS para determinar su ubicación.

 

Ejemplos de sistemas de localización en tiempo real son:

  • Rastreo de automóviles a través de una línea de montaje
  • Localización de palets de mercancías en un almacén
  • Identificación de personas por razones de salud y seguridad
  • Búsqueda de equipos médicos en un hospital.

 

La capa física de la tecnología de los RTLS suele ser alguna forma de comunicación de radiofrecuencia (RF), como BLE (Bluetooth 4.0), UWB (Ultra Wide Band) o sistemas propietarios. Los Tags y puntos de referencia fijos pueden ser transmisores, receptores o ambos, existiendo numerosas combinaciones tecnológicas posibles.

 

Los RTLS son una forma de sistema de posicionamiento local, y no suelen referirse a GPS, seguimiento de teléfonos móviles. La información de ubicación normalmente no incluye la velocidad, la dirección o la orientación espacial. En cambio, son muy rentables, necesitan baterías mínimas, trabajan tanto en interiores como en exteriores, no necesitan un operador de telecomunicaciones móviles y usan protocolos abiertos.

 

Tecnologías en los Sistemas de Localización en Tiempo Real RTLS

 

Existe una amplia variedad de tecnologías en las que se pueden basar los RTLS:

 

  • Infrarrojos (IR). Requieren una línea de visión clara para que las etiquetas y los sensores se comuniquen, por lo que si una placa está cubierta por una manta o se voltea, es posible que el sistema no funcione correctamente
  • Ultrasonidos. El ultrasonido, como protocolo de comunicaciones, es más lento (con longitudes de onda más largas) que el infrarrojo, por lo que generalmente no puede igualar el rendimiento de otras tecnologías.
  • Wi-Fi. Aunque la infraestructura Wi-Fi a menudo es preexistente en el entorno de actuación, la precisión se limita a hasta 9 metros, lo que hace que su valor como herramienta de localización de la ubicación sea incierto.
  • RFID: Hay dos tipos de tecnologías RFID a considerar, activo y pasivo. La tecnología RFID pasiva funciona sólo en la proximidad de lectores RFID especializados, proporcionando una ubicación ‘punto-en-tiempo’. Como ejemplo, pensemos en una tienda de moda donde el lector envía una señal de radio a un artículo etiquetado de ropa y una alarma se activa sólo cuando la etiqueta se detecta muy cerca del punto de estrangulación designado. Con RFID activo, tiene etiquetas que envían la señal a un lector cada pocos segundos (similar a un teléfono celular y una torre) y el software de triangulación u otros métodos se utilizan para calcular la posición del objeto marcado.
  • UWB: La ventaja de la tecnología UWB es el alto nivel de seguridad de transmisión. La señal UWB es difícil de detectar y localizar, porque la densidad de potencia espectral se encuentra por debajo del ruido térmico de fondo. Puede alcanzar una precisión de 10 centímetros a distancias de medición de hasta 100m.
  • BLE: El bluetooth de baja energía (Bluetooth Low Energy o BLE) aparece desde la especificación en su versión 4.0. Está dirigido a aplicaciones de muy baja potencia alimentados con una pila de botón. Tiene una velocidad de emisión y transferencia de datos de 32Mb/s. Funciona en las frecuencias de 2,4 GHz y fue creada por razones de marketing para dispositivos smartphone y tablet. Ventajas importantes de esta tecnología son que se basa en un estándar universal, y está disponible inmediatamente sobre dispositivos móviles sin la necesidad de un hardware.

 

Comparativa de Tags de diferentes tecnologías para los RTLS:

comparativa

 

 

 

 

 

 

Tecnologías Localización Tiempo Real (RTLS): RFID vs BLE vs UWB

Sigfox vs LoRa: comparando redes LPWAN

Las redes LPWAN (redes de banda ancha y baja potencia) son un tipo de red de comunicación inalámbrica diseñada para comunicaciones de gran alcance pero que sólo puede manejar velocidades de datos muy bajas.

Estas redes se adaptan perfectamente al caso de uso IoT, donde los objetos conectados envían pequeñas cantidades de datos generados por el sensor y funcionan con la energía de la batería.

Seguir leyendo “Sigfox vs LoRa: comparando redes LPWAN”

Sigfox vs LoRa: comparando redes LPWAN

Minsait by Indra participa en el Digital Enterprise Show

DES_2017

 

Minsait, la unidad de Indra que da respuesta a los retos que plantea la transformación digital, tendrá un papel relevante en el Digital Enterprise Show (DES 2017), que tendrá lugar los días 23, 24 y 25 de mayo en el recinto ferial IFEMA en Madrid.

 

Los expertos de Minsait han identificado que “el cambio” está acelerándose como consecuencia del enorme grado de conectividad, que se resume en el intercambio constante de información en tiempo real a través del despliegue masivo de sensores inteligentes, y del Big Data y la inteligencia aplicada al dato, que redunda en “mayores niveles de eficiencia y automatización” mediante modelos predictivos y de ayuda a la toma de decisión.

 

Entre las intervenciones, destacan:

 

  • Big Data y Analytics, en la intervención de Silviano Andreu, Director Global de Minsait.
  • El cambio cultural y organizacional, en una ponencia de Sergio Martín Guerrero, Director de Soluciones Digitales.
  • Los riesgos asociados a las ciberamenazas, en la ponencia de Isabel González Hervás, Responsable de Tecnologías de Ciberseguridad.
  • Industria 4.0, con una intervención de Gerardo A. Villalba Bello, responsable de operaciones digitales e Industria 4.0.
  • La relación entre Blockchain y las tecnologías IoT, en la intervención de Miguel Ángel González, Director de Soluciones Digitales.

 

Para más información, accede a la web oficial del congreso

 

 

 

Minsait by Indra participa en el Digital Enterprise Show

IoT Technologies and its support in Sofia2

p1

IoT technologies make it easy to connect all kinds of things to the network and develop applications to control and manage these “things”. All the complexities of enabling connectivity, services, and deployment for these devices is the task of the IoT platform.

An IoT platform ensures integration with different hardware devices supporting a wide range of communication protocols. Through the integration interfaces provided by the platform, you can also manage the IoT data collected to specific systems for data visualization, data storage, as well as transmitting data to connected devices (configuration, notifications) or between them (controls, events ).

IoT platforms are also known as IoT Middleware, which underlines its functional role as mediator between hardware and application layers.

Let’s see an IoT flow and the components involved:

p1.PNG

Sofia2 supports each and every one of the modules in the previous diagram as follows:

 Things

         Generic IoT Platform                                  Sofia2 IoT Platform

p2                 thingssofia2

We understand Things as any device that is capable of sending data, whether sensors, surveillance cameras, robotic arms, Smart watch … Some of the devices supported by Sofia2 are:

  • Devices:
    • Opening and closing doors sensor : CLIMAX, Leedarson, Nyce, Wulian, Centralite.
    • Environmental thermometer: Several manufactures
    • Pulsoximetros: several manufactures using IEEE protocol
  • Smart Home: presence sensor: CLIMAX, Leedarson, Nyce, Wulian, Centralite, DEVELCO.
  • Smart Building: Smart Plug: Meazon, 4-Noks
  • Smart Retail:
    • Thermostat: 4-Noks, Centralite
    • IP Camera: D-LINK, Panasonic
    • Temperature and humidity sensor: Wulian, Centralite, Leedarson
    • Smoke and gas sensor: CLIMAX, DEVELCO, Leedarson, Wulian
    • Flood sensor: Centralite, CLIMAX, DEVELCO, Wulian
    • Light sensor: Leedarson
    • Smoke Listener: Centralite
    • Siren: Metalligence, Wulian
    • LED illumination: LG, Leedarson
    • Switches: CLIMAX, Centralite
    • Thermostatic valve: CLIMAX
    • Weather station: Adafruit sensors
    • Beacon: Indra, Estimote
    • Panic button: CLIMAX, Centralite
    • Smart Meters: Several manufactures
  • Smart Cities: Environmental humidity sensor: several manufactures
  • Smart Traffic: Sensor power consumption: several manufactures
  • Smart Agro: Flowmeter: several manufactures
  • Smart Tourism:
    • Tensiometer: several manufactures
    • Potentiometer: several manufactures
    • Smart metering: several manufactures
    • Traffic ligth: Cross
    • Intelligent lighting: UVAX, LUIX
    • Libelium sensors
      • Air Quality
      • Atmospheric pressure
      • Temperature
      • Humidity
      • Luminosity
      • Waspmote internal temperature, batterty level, accelerometer
  • Smart Health: scales, several manufactures using IEEE protocol
  • Smart Insurance:
    • Tensiometers: several manufactures using IEEE protocol
    • Thermometer: Fora
    • Glucometer: Fora
    • Nociceptor: several manufactures
    • Anesthesia tower: Drager, General Electric
    • Pressure sensor in bed
    • Fall sensor
    • SmartBand: Withings
  • Otros:
    • Quadrirotor/Drone: Indra, 3DRobotics, Microsoft IPCam
    • Rover/Drone: Indra
    • Raspberry Pi: Indra
    • ARduino

In addition to supporting the data collection of all these devices, Sofia2 also allows the ingestion of data from other types of sources, such as RRSS, APIs and general files:

dispositivossofia2people

Conectivity

Generic IoT Platform        Sofia2 IoT Platform

p3.PNG    Comunicacion Sofia2

Sofia2 is agnostic of the communications, with implementations in multiple protocols of light communication (REST, OPC, MODBUS,  WebSockets, MQTT, WS, JMS, AMQP…)

In addition, among others, the gateways supported by Sofia2 are:

gatewayssofia21

Services and Cloud

 Generic IoT Platform                                   Sofia2 IoT Platform

p4.PNGServiciosycloudSofia2

In the platform Sofia2 the following elementary concepts are defined:

smart space sofia2

SmartSpace

It is the collaborative universe of systems and/or devices (ThinKPs) that exchange information between them. The core of a Smart Space is the SIB (Semantic Information Broker):

SIB: It is the core of the Smart Space, acts as an element of integration of the information exchanged by the devices. There may be several in a Smart Space.

ThinKP: Each of the systems and / or applications that interoperate in the Smart Space through the SIB must be defined as ThinKP in the same. The ThinKP is an element deployed in the Smart Space that can consume and/or produce information.

Ontology: Semantic atomic element with which to model the different information systems that interoperate in the Smart Space domain.

Ontologies are semantic descriptions of a set of classes. In this way, applications that share classes (usually called concepts) of the same ontology, can exchange information through concrete instances of these common classes.

In Sofia2, these ontologies are represented in JSON-Schema format that defines and validates them.

In terms of data storage in Sofia2 we distinguish between:

databases

For each ontology can be configured a time window from which the information is considered ‘historical’.

The information remains in this database until it is automatically migrated to the historical information repository.

The stored information will be available as data source for the different modules of the platform: Integration, Machine Learning, APIManager.

Sofia2 has an API Manager with the following capabilities:

Sofia2ApiManager

Apps and Analytics

Generic IoT Platform                             Sofia2 IoT Platform

p5   AppsyAnalyticsSofia2

In sofia2/console we will find the user interface and experimentation environment with all the capabilities of the platform. In it we can not only create Ontologies to model our data, ThinKPs or ingest data files or RRSS, but also we can create rules (SCRIPTS) to process all this information in the way we are most interested, to visualize this data in Gadgets and Dashboards Or publish ontologies via API. We also have Analytics modules that will allow us to create pipelines and notebooks, or create Machine Learning flows:

ML

To conclude, here we can see the architecture of the platform Sofia2:

ArquitecturaSofia2

As well as an overview of the Sofia2 components:

flujo general Sofia2

IoT Technologies and its support in Sofia2

Minsait impulses IoT Smart Cities solutions with Sofia2

Sofia2InfografiaRecortada

Minsait, Indra’s digital transformation unit, its promoting the construction of solutions with high innovative content in the scope of Smart Cities, through their participation in the European program of I+D Smart Cyber ​​Physical Systems Engineering (CPSE) Labs, which purpose is the creation of a collaborative network of expert centers in engineer for developing cyberphysicists systems in the areas like smart cities, automotive or urban sustainability.

 

FEEP IoT&BigData Platform Sofia2 has impulsed the development of solutions with high value added in clients of scopes like Smart Cities (La Coruña urban platform) or Smart Health (TELEA project, for teleassitance, and SISENS for monitorize the pacients, both of them in the Sanity Galician Service), in addition, is the technological base for projects of diferents indole:

  • Develop for an intelligent water management system, capable of reaching a save to a 40% in consume, integrating heterogene information from diferent devices and systems, in addition be able to process thousands of events per second, with Big Data capabilities and integrated rules. Project iWESLA.

 

  • Two new projects that has been recently started to try out the use of drones as information source for the new european emergency calls system and impulse the sustainable development in cities.

 

  • Development of e-Vacuate, an european project for the innovation wich purpose is developing a simulating and management emergency system and IoT and Big Data technologies to define in real time optimal evacuating routes for big infrastructures.

 

  • In fields like domotic, industry and retail, through solutions like Connected Home, Smart Cities, Industry 4.0, as well as severals solutions destined to the energetic eficiency world and sustainable in infrastructures.

 

  • Building solutions in I+D projects in transport sector, like ITRail or Transforming Transport, or space, like Land Analytic Eo Platform

 

If you want to know more about the developed and in progress projects in Sofia 2 platform click here to see the press release

Minsait impulses IoT Smart Cities solutions with Sofia2

Streamsets, Cool Vendor Data Management Gartner 2017

StreamSets Cool Vendors Banner.png

En el informe de Gartner de este 2017 en el que se identifican Cool Vendors en el ámbito de Data Management se han identificado estos 4 vendors/productos:

· StreamSets — A real-time approach to data integration.

· Gluent — Seamless access to data residing in new, less costly DBMS platforms from legacy or new applications.

· Iguazio — A unified storage approach coupled with a multimodel DBMS engine that aims to eliminate data silos.

· Rokitt Astra — Innovative approach to metadata management and visualization.

Como sabéis Streamsets es la tecnología subyacente al módulo DataFlow de Sofia2.

Podéis leer el informe completo aquí.

Streamsets, Cool Vendor Data Management Gartner 2017